Selasa, 22 November 2011

ketel uap


A.    KETEL UAP (STEAM BOILER)
Sebuah ketel uap biasanya merupakan bejana tertutup yang terbuat dari baja.Fungsinya adalah memindahkan panas yang dihasilkan pembakaran bahan bakar ke air yang pada akhirnya akan menghasilkan uap. Uap yang dihasilkan bisa dimanfaatkan untuk:
1.      Mesin pembakaran luar seperti: mesin uap dan turbin.
2.      Suplai tekanan rendah bagi kerja proses di industri seperti industri pemintalan,pabrik gula dsb.
3.      Menghasilkan air panas, dimana bisa digunakan untuk instalasi pemanas
Bertekanan rendah.

Istilah-istilah penting pada ketel uap
1.      Kulit ketel. (boiler shell)
Dibuat dari pelat baja yang dilengkungkan membentuk silinder dan di keling atau dilas. Kulit ketel harus mempunyai kapasitas yang cukup bagi air dan uap.
2.      Ruang bakar.
Adalah ruang, umumnya dibawah kulit boiler, tempat membakar bahan bakar yang akan digunakan untuk memanaskan air.
3.      Panggangan.
Adalah sebuah pelat datar di dalam ruang bakar, dimana bahan bakar (batubara atau kayu) dibakar. Panggangan biasanya terdiri dari batang besi cor yang berjarak diantaranya supaya udara untuk pembakaran bisa melewatinya.




4.      Tungku.
Adalah ruang diatas panggangan dan di bawah kulit ketel. Tungku biasa disebut juga kotak api (firebox).
5.      Permukaan pemanas.
Adalah bagian dari permukaan ketel, dimana terkena langsung ke api (atau gas panas dari api).
6.      Mounting.
Adalah semua fitting yang dipasang pada ketel supaya bisa beroperasi dengan benar. Fitting ini diantaranya adalah : indikator ketinggian, pengukur tekanan, katup pengaman dsb.
7.       Asesoris.
Adalah piranti-piranti yang merupakan bagian integral dari ketel namun tidak langsung terpasang pada bodi ketel. Yang termasuk asesoris antara lain: superheater (pemanas lanjut), ekonomiser, pompa umpan dsb.

1.      Esensi Ketel Uap Yang Baik
Berikut ini adalah esensi dari ketel uap yang baik.
1.   Harus menghasilkan kuantitas maksimum uap dengan bahan bakar yang diberikan.
2.   Harus ekonomis ketika dipasang, dan menghendaki sedikit perhatian ketika beroperasi.
3.   Harus secara cepat bisa memenuhi beban yang berfluktuasi.
4.   Harus bisa distarter dengan cepat.
5.   Beratnya harus ringan.
6.   Harus menempati ruang yang kecil.
7.   Sambungan harus sesedikit mungkin dan bisa dinspeksi.
8.   Lumpur atau endapan lainnya tidak boleh mengumpul pada pelat pemanas.
9.   Tube tidak boleh mengakumulasi jelaga atau kotoran air, dan harus mempunyai toleransi ketebalan untuk keausan dan korosi.
10. Rangkaian air dan gas asap harus didesain supaya bisa memberikan kecepatan fluida maksimum tanpa mengakibatkan kerugian gesek yang besar.

2.      Pemilihan Ketel Uap
Pemilihan jenis dan ukuran ketel uap tergantung pada faktor-faktor berikut:
1. Daya yang diperlukan dan tekanan kerja.
2. Posisi geografi dari power house (sumber tenaga).
3. Ketersediaan bahan bakar dan air.
4. Kemungkinan stasiun permanen.
5. Faktor beban yang mungkin.

3.      Klasifikasi Ketel Uap
Ada banyak klasifikasi ketel uap, berikut ini diberikan beberapa klasifikasi ketel uap
yang penting.
1. Berdasarkan isi tube/pipa.
(a) Pipa api atau pipa asap, dan
(b) pipa air.
Pada ketel pipa api, nyala api dan gas panas yang dihasilkan pembakaran, mengalir melalui pipa yang dikelilingi oleh air. Panas dikonduksikan melalui dinding pipa dari gas panas ke air di sekeliling pipa tersebut. Contoh ketel uap pipa air sederhana: ketel vertikal sederhana, ketel Cochran, ketel Lanchasire, ketel Cornish, kete Scotch marine, ketel lokomotif dan ketel Velcon. Pada ketel pipa air, air dimasukkan ke dalam pipa dimana pipa dikelilingi oleh nyala api dan gas panas dari luar. Contoh ketel jenis ini : ketel Babcock dan Wilcox, ketel Stirling, ketel La-Mont, ketel Benson, ketel Yarrow dan ketel Loeffler.
2. Berdasarkan posisi dapur pembakar.
(a) Dibakar di dalam, dan
(b) Dibakar Di Luar.
Pada ketel uap dibakar di dalam, dapur diletakkan di dalam kulit boiler. Sebagaian besar ketel pipa api mempunyai jenis ini. Pada ketel uap dibakar di luar, dapur disusun dibawah susunan bata. Ktel pipa air selalu dibakar di luar.
3. Berdasarkan sumbu shell/kulit.
(a) Vertikal, dan
(b) Horizontal.
Pada ketel uap vertikal, sumbu shell vertikal, sedangkan pada jenis horisontal, sumbu shellnya horisontal.
4. Berdasarkan jumlah pipa.
(a) Pipa tunggal, dan
(b) pipa banyak.
Pada ketel uap pipa tunggal, hanya ada satu buah pipa api atau pipa air. Ketel vertical sederhana dan ketel Cornish adalah jenis ketel pipa tunggal. Pada ketel pipa banyak, ada dua atau lebih pipa api atau pipa air.






5. Berdasarkan metode sirkulasi air dan uap.
(a) Sirkulasi alami, dan
(b) Sirkulasi paksa.
Pada ketel dengan sirkulasi alami, sirkulasi air adalah dengan arus konveksi alami/natural, dimana dihasilkan karena pemanasan air. Pada ketel uap dengan sirkulasi paksa, ada sirkulasi paksa pada air dengan memakai penggerak pompa. Penggunaan sirkulasi paksa dilakukan pada ketel seperti ketel La-Mont, ketel Benson, ketel Loefler dan ketel Velcon.
6. Berdasarkan penggunaannya.
(a) Stasioner, dan
(b) Mobil (bergerak).
Ketel uap stasioner digunakan di pusat pembangkit tenaga, dan di industri proses. Ketel ini disebut stasioner karena ketel tidak berpindah dari satu ke tempat lainnya. Ketel uap mobil adalah ketel yang bergerak dari satu tempat ke tempat lainnya. Ketel jenis ini seperti ketel lokomotif dan ketel marine.
7. Berdasarkan sumber panas.
Sumber panas bisa berupa pembakaran bahan bakar padat, cair atau gas, gas sisa panas yang dihasilkan dari proses kimia, energi listrik atau energi nuklir.

a.      Ketel Uap Vertikal Sederhana
Ketel uap vertikal sederhana menghasilkan uap pada tekanan rendah dan dalam jumlah kecil. Karenanya digunakan pada pembangkit daya rendah atau pada tempat di mana ruang terbatas. Konstruksi ketel jenis ini diperlihatkan oleh gambar 1. Ketel ini terdiri dari kulit silinder yang mengelilingi kotak api silinder. Kotak api silinder ditap di atasnya tempat mengalirnya uap ke permukaan. Pada dasar kotak api terdapat grate (panggangan). Kotak api dilengkapi dengan dua atau lebih pipa melintang miring F, F. Kemiringan bertujuan untuk menaikkan permukaan pemanasan disamping juga untuk meningkatkan sirkulasi air. Lubang tangan (hand hole) dibuat disamping untuk keperluan pembersihan deposit. Sebuah lubang orang (man hole) dibuat di atas untuk supaya orang bisa memasuki ketel untuk pembersihan. Sebuah lobang abu dibuat pada dasar ketel untuk pembuangan abu yang mengendap. Ruang antara kulit boiler dan kotak api diisi dengan air yang akan dipanaskan.
Gambar 1. Ketel vertikal sederhana.
b.      Ketel Uap Cochran atau Ketel Pipa Banyak Vertikal
Ada banyak desain mengenai ketel pipa banyak, ketel Cochran dianggap sebagai salah satu ketel jenis ini yang paling efisien. Ketel cochran merupakan jenis ketel vertikal sederhana yang telah ditingkatkan.
Ketel terdiri dari kulit silinder eksternal dan kotak api seperti yang diperllihatkan gambar 2. Kulit dan kotak api keduanya berbentuk setengah bola. Mahkota setengah bola pada kulit memberikan ruang maksimum dan kekuatan maksimum untuk menahan tekanan uap di dalam ketel. Kotak api dan ruang bakar (combustion chamber) dihubungkan melalui pipa pendek. Gas asap dari ruang bakar mengalir ke kotak asap (smoke box) melalui sejumlah pipa asap. Pipa ini umumnya mempunyai diameter luar 62,5 mm dan berjumlah 165 buah. Gas dari kotak asap mengalir ke atmosfir melalui cerobong (chimney).Ruang bakar dilapisi dengan batu tahan api pada sisi kulit. Lobang orang dekat puncak mahkota kulit diperlukan untuk pembersihan.
Pada dasar kotak api terdapat panggangan (dalam halpembakaran batubara) dan batu bara di umpan melalui lobang api (fire hole). Jika ketel digunakan untuk pembakaran bahan bakar minya, tidak diperlukan panggangan, tetapi dasar kotak api dilapisi dengan bata tahan api. Pembakar minyak di pasang di lobang api.
Gambar 2. Ketel Cochran.




c.       Ketel Scotch Marine
Gambar 3. Ketel Scotch marine.
Ketel uap marine (kapal) jenis Scotch atau tangki digunakan untuk kerja di laut karena kekompakannya, efisien dalam operasinya dan kemampuannya untuk menggunakan berbagai jenis air. Ketel mempunyai drum dengan diameter dari 2,5 hingga 3,5 meter yang ditempatkan secara horisontal. Ketel uap ini bisa berupa ujung tunggal atau ujung ganda. Panjang ketel uap ujung tunggal bisa sampai 3,5 meter, sedangkan ujung ganda bisa sampai 6,5 meter. Ketel ujung tunggal mempunyai satu sampai empat dapur yang masuk dari sisi depan ketel. Ketel ujung ganda mempunyai dapur pada kedua ujungnya, dan bisa mempunyai dapur dari dua sampai empat pada setiap ujung. Ketel uap ujung tunggal Scotch marine bisa dilihat pada gambar 3. Setiap dapur mempunyai ruang bakarnya masing-masing. Terdapat pelat datar di setiap ruang bakar yaitu pelat atas, pelat bawah, dua pelat sisi dan pelat tube/pipa. Sejumlah pipa asap ditempatkan secara horisontal dan menghubungkan ruang bakar dengan cerobong. Pipa dapur, pipa asap dan ruang bakar, semuanya dikelilingi oleh air, memberikan luas permukaan pemanasan yang sangat besar. Air bersirkulasi disekeliling pipa asap. Level air dijaga sedikit diatas ruang bakar. Kotak asap (smoke box) dibuat dengan pintu untuk membersihkan pipa dan kotak asap.

d.      Ketel Lanchasire
Ketel ini merupakan jenis pipa api stasioner, pembakaran dalam, horisontal dan sirkulasi alami. Digunakan jika tekanan kerja dan daya yang diperlukan menengah. Ketel ini mempunyai diameter kulit silinder 1,75 hingga 2,75 meter. Panjangnya bervariasi dari 7,25 m hingga 9 m. Ketel ini mempunyai dua pipa gas asap internal yang berdiameter kira-kira 0,4 kali dari diameter kulit. Gambar ketel ini bisa dilihat pada gambar 4. Ketel ini terdiri dari kulit eksternal silinder panjang (1) yang terbuat dari pelat baja. Ketel mempunyai dua pipa api internal besar (2). Pipa ini diameternya mengecil pada bagian belakang untuk akses ke bagian yang lebih rendah pada ketel. Panggangan api (3) yang disebut juga dapur disediakan pada ujung pipa gas asap dimana disini bahan bakar padat dibakar. Pada ujung panggangan terdapat bata (5) yang berfungsi membelokkan gas asap ke atas. Gas asap panassetelah meninggalkan pipa gas asap internal turun ke pipa dasar (6). Gas asap ini bergerak ke depan ketel dimana alirannya terbagi dan mengalir ke
lorong api sisi (7). Gas asap memasuki lorong utama (9) dan selanjutnya menuju cerobong.
Gambar 4. Pandangan depan, sisi dan atas ketel Lancashire.
Damper (8) berguna untuk mengatur besar aliran gas asap keluar. Katup (11) berfungsi menyuplai uap ke mesin seperti yang dikehendaki. Ketel dilengkapi dengan katup pengaman pegas (10), katup pengaman jika uap tinggi dan air rendah (12). Blow off cock (16) untuk membuang lumpur dsb yang mengendap pada dasar ketel.
e.       Ketel Cornish
Ketel ini sejnis dengan ketel Lanchasire kecuali ia mempunyai hanya satu pipa asap. Diameter ketel cornish berkisar antara 1 m hingga 2 m dan panjang 5 m hingga 7,5 m. Kapasitas dan tekanan kerja ketel ini adalah rendah jika dibandingkan dengan ketel Lanchasire.
Gambar 5. Ketel Cornish.
f.       Ketel Lokomotif
Merupakan jenis ketel mobile dan pembakaran internal, horisontal banyak pipa. Prisnip ketel ini adalah menghasilkan uap dengan laju kecepatanb tinggi. Jenis ketel lokomotif moderen diperlihatkan pada gambar 6.
Gambar 6. Ketel Lokomotif.

Ketel terdiri dari kulit atau barrel yang mempunyai diameter 1,5 m dan panjang 4 m. Batubara diumpan kedalam kotak api melalui pintu api dan terbakar pada panggangan. Gas asap dari panggangan dibelokkan oleh bata dan keseluruhan kotak api terpanaskan secara baik. Ada sekitar 157 pipa tipis atau pipa api F (diameter 47,5 mm) dan 24 buah pipa panas lanjut tebal G (diameter 13 cm). Gas asap setelah melewati pipa ini masuk ke kotak asap. Gas kemudian keluar ke atmosfir melewati cerobong. Barrel berisi air disekeliling pipa, dimana dipanaskan oleh gas asap dan berubah menjadi uap. Header terbagi atas dua porsi, satu adalah ruang uap panas lanjut dan satu lagi ruang uap jenuh. Pipa uap mengarahkan uap dari regulator ke ruang uap jenuh. Kemudian uap diarahkan ke pipa panas lanjut, dan setelah melewati pipa ini, uap kembali ke ruang uap panas lanjut. Uap panas lanjut sekarang mengalir melalui pipa uap ke silinder, satu buah di setiap sisi. Abu daripanggangan dikumpulkan pada nampan abu (ash pan) dan dibuang dari waktu ke waktu dengan bantuan damper yang dioperasikan oleh batang dan tuas.
g.      Ketel Babcock and Wilcox
Merupakan ketel jenis pipa lurus, stasioner, pipa air. Gambar 7 memperlihatkan ketel jenis ini.
Gambar 7. Ketel Babcock and Wilcox.
Ketel terdiri dari drum uap dan air (1). Drum dihubungkan dengan pipa pendek ke bagian atas header atau riser (2). Pipa air (5) (diameter 10 cm) dipasang miring dan menghubungkan header atas dengan header bawah. Header dilengkapi dengan lobang tangan (hand hole) di depan pipa dan ditutup dengan cap (18). Kotak lumpur (6) disediakan pada header bagian bawah dan lumpur yang mengendap bisa dibuang. Terdapat panggangan berantai otomatis yang bergerak lambat dimana ditempatkan batubara yang diumpan dari hopper (21). Baffle bata tahan api akan membuat gas panas bergerak naik turun dan naik lagi sampai akhirnya masuk ke cerobong. Damper (17) digerakkan oleh rantai (22) untuk mengatur isapan. Ketel di keempai sisinya dikelilingi oleh dinding tahan api. Pintu (4) berguna untuk orang masuk ke ketel untuk tujuan perbaikan dan pembersihan. Air bersirkulasi dari drum (2) ke header (3) dan melalui pipa (5) ke header dan kembali ke drum. Air terus-menerus bersirkulasi seperti ini sampai air menguap. Pemanas lanjut uap (superheater) terdiri dari sejumlah besar pipa baja (10) dan berisi dua kotak, satu adalah kotak uap panas lanjut (11) dan satunya lagi kotak uap jenuh(12).
Uap yang dihasilkan diatas level air di drum mengalir di dalam pipa kering dan pipa inlet ke kotak panas lanjut (11). Kemudian uap menuju kotak uap jenuh (12) melalui (10). Uap selama mengalir melalui pipa (10) mendapat panas lanjutan sehingga menjadi uap panas lanjut. Uap kemudian diambil dari ujung pipa (14) melalui katup (15). Ketel dilengkapi dengan berbagai fitting seperti katup pengaman (19), katup pengumpan (20), indikator ketinggian air (8) dan pengukur tekanan (9).
h.      Ketel La-Mount
Ketel ini adalah ketel moderen jenis tekanan tinggi, pipa air, bekerja dengan sirkulasi paksa. Sirkulasi diatur oleh pompa sentrifugal, digerakkan oleh turbin uap menggunakan uap dari ketel. Sirkulasi paksa menyebabkan berat air umpan (feed water) yang bersirkulasi ke seluruh dinding air dan drum sama dengan sepuluh kali berat uap. Ini akan mencegah pipa mendapatkan panas lebih. Skematik diagram ketel ini bisa dilihat pada gambar 8.
Air umpan mengalir melalui ekonomiser ke drum penguap. Kemudian air ditarik dengan pompa ke pipa. Pompa mendorong air ke header pada tekanan diatas tekanan drum. Header mendistribusikan air melalui nosel ke pipa pembangkit yang bekerja secara paralel. Air dan uap dari pipa ini mengalir ke drum. Uap di dalam drum kemudian diambil setelah melewati superheater.
Gambar 8. Ketel La-Mount.
i.        Ketel Loeffler
Ketel ini adalah ketel jenis pipa air menggunakan sirkulasi paksa. Prinsip kerja utama adalah dengan menguapkan air dengan uap panas lanjut dari superheater. Gas panas dari dapur pemanas digunakan untuk pemanasan panas lanjut. Skema ketel ini bisa dilihat pada gambar 9.
Air umpan dari ekonomiser dipaksa bercampur dengan uap panas lanjut di dalam drum penguap (evaporating drum). Sehingga terbentuk uap jenuh, dan kemudian ditarik dari drum dengan pompa sirkulasi uap. Uap ini kemudian mengalir melalui pipa-pipa pada dinding ruang bakar memasuki superheater. Dari superheater, sekitar sepertiga uap panas lanjut diteruskan ke turbin dan sisanya yang dua pertiga digunakan untuk menguapkan air umpan di drum penguap.
Gambar 9. Ketel Loeffler.
1)      Keuntungan Dan Kerugian Ketel Pipa Air
Keuntungan-keuntungan ketel pipa air:
a)      Menghasilkan uap dengan tekanan lebih tinggi dari pada ketel pipa api.
b)      Untuk daya yang sama, menempati ruang/tempat yang lebih kecil daripada ketel pipa api.
c)      Laju aliran uap lebih tinggi.
d)     Komponen-komponen yang berbeda bisa diurai sehingga mudah untuk dipindahkan.
e)      Permukaan pemanasan lebih efektif karena gas panas mengalir keatas pada arah tegak lurus.
f)       Pecah pada pipa air tidak menimbulkan kerusakan ke seluruh ketel.
2)      Kerugian-kerugian ketel pipa air:
1. Air umpan mensaratkan mempunyai kemurnian tinggi untuk mencegah endapan kerak di dalam pipa. Jika terbentuk kerak di dalam pipa bisa menimbulkan panas yang berlebihan dan pecah.
2. Ketel pipa air memerlukan perhatian yang lebih hati-hati bagi penguapannya, karena itu akan menimbulkan biaya operasi yang lebih tinggi.
3. Pembersihan pipa air tidak mudah dilakukan.
j.        Superheater
Superheater adalah piranti penting pada unit pembangkit uap. Tujuannya adalah untuk meningkatkan temperatur uap jenuh tanpa menaikkan tekanannya. Biasanya piranti ini merupakan bagian integral dari ketel, dan ditempatkan dijalur gas asap panas dari dapur. Pada dari gas asap ini digunakan untuk memberikan panas lanjut pada uap. Superheater Sudgen yang biasanya terpasang pada ketel Lanchasire diperlihatkan oleh gambar 11. Piranti ini terdiri dari dua kotak baja atau heater dimana bergantung padanya sekumpulan pipa lengkung berbentu U. Ujung dari pipa-pipa ini diteruskan ke header. Uap masuk ke ujung belakang header dan keluar diujung depan header. Panas yang berlebihan pada pipa superheater dicegah dengan menggunakan damper penyeimbang yang dioeparsikan dengan handel.
Gambar 11. Superheater.
Superheater bekerja jika damper pada posisi yang ditunjukkan gambar. Jika damper pada posisi vertikal, gas akan lewat langsung di dasar tanpa melewati pipa-pipa superheater. Pada kondisi ini maka superheater tidak bekerja. Perlu dicatat bahwa jika superheater bekerja, katup G dan H dalam kondisi terbuka dan katup F tertutup. Jika uap diambil langsung dari ketel , katup G dan H tertutup dan katup F terbuka.
k.      Ekonomiser
Ekonomiser adalah piranti yang digunakan untuk memanaskan air umpan dengan memanfaatkan panas dari gas asap sebelum masuk ke cerobong. Ekonomiser akan meningkatkan nilai ekonomis ketel uap. Jenis ekonomiser yang populer adalah ekonomiser “Greans” dan banyak digunakan pada ketel stasioner. Ekonomiser ini terdiri dari sejumlah besar pipa vertikal yang ditempatkan sebagai penambahan gas asap antara ketel dengan cerobong seperti terlihat pada gambar 12. Pipa-pipa ini mempunyai panjang 2,75 m, diameter luar 11,4 cm dan tebal 11,5 mm dari bahan besi tuang. Ekonomiser dibuat dalam seksi tegak. Setiap seksi umumnya terdiri dari enam atau delapan pipa vertikal (1). Pipa-pipa ini disambung ke pipa atau kotak horisontal (2) diatas dan (3) dibawah. Kotak atas (2) dari seksi yang berbeda disambung dengan pipa (4), sedangkan kotak bawah disambungkan ke pipa (5).
Gambar 12. Ekonomiser.
Air umpan dipompa ke ekonomiser pada (6) dan memasuki pipa (5). Kemudian air masuk ke dalam kotak bawah (3) dan kemudian ke dalam kotak atas (2) melalui pipa (1). Air kemudian diarahkan pipa (4) ke pipa (7) dan kemudian ke ketel. Perlu dicatat bahwa temperatur air umpan tidak boleh kurang dari 35 oC, jika tidak ada bahaya korosi disebabkan oleh uap air di gas asap mengendap di pipa dingin. Berikut ini adalah keuntungan-keuntungan menggunakan ekonomiser:
1. Ada penghematan batubara 15 sampai 20%.
2. Meningkatkan kapasitas menghasilkan uap karena memperpendek waktu yang
diperlukan untuk merubah air ke uap.
3. Mencegah pembentukan kerak di dalam pipa air ketel, sebab kerak sekarang
mengendap di pipa ekonomiser yang bisa dengan mudah dibersihkan.
4. Karena air umpan memasuki ketel panas, sehingga regangan karena ekspansi yang
tidak sama bisa diminimasi.
Read More..

turbin uap


Turbin uap merupakan suatu penggerak mula yang mengubah energi potensial uap menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanis dalam bentuk putaran poros turbin. Poros turbin, lansung atau dengan bantuan roda gigi reduksi, dihubungkan dengan mekanisme yang akan digerakkan. Tergantung pada jenis mekanisme yang digunakan, turbin uap dapat digunakan pada berbagai bidang seperti pada bidang industri, untuk pembangkit tenaga listrik dan untuk transportasi. Pada proses perubahan energi potensial menjadi energi mekanisnya yaitu dalam bentuk putaran poros dilakukan dengna berbagai cara.
Turbin uap modern pertama kali dikembangkan oleh Sir Charles Parsons pada tahun 1884. Pada perkembangannya, turbin uap ini mampu menggantikan peranan dari kerja mesin uap piston torak. Hal ini disebabkan karena turbin uap memiliki kelebihan berupa efisiensi termal yang besar dan perbandingan berat dengan daya yang dihasilkan yang cukup tinggi. Pada prosesnya turbin uap menghasilkan gerakan rotasi, sehingga hal ini sangat cocok digunakan untuk menggerakkan generator listrik. Pada saat ini, sudah hampir 80% pembangkit listrik diseluruh dunia telah menggunakan turbin uap.
Secara umum turbin uap dapat digolongkan menjadi tiga macam yaitu turbin impuls, reaksi dan gabungan. Penggolongan ini berdasarkan cara mendapatkan perubahan energi potensial menjadi energi kinetik dari semburan uapnya.


Turbin Impuls VS Turbin Reaksi (untuk lebih jelas, klik pada gambar)
Adapun turbin impuls mengubah energi potensial uapnya menjadi energi kinetik didalam nosel (yang dibentuk oleh sudu-sudu diam yang berdekatan). Nosel diarahkan kepada sudu gerak. Didalam sudu-sudu gerak, energi kinetik diubah menjadi energi mekanis. Energi potensial uap berupa ekspansi uap, yang diperoleh dari perubahan tekanan awal hingga tekanan akhirnya di dalam sebuah nosel atau dalam satu grup nosel yang ditempatkan didepan sudu-sudu cakram yang berputar. Penurunan tekanan uap didalam nosel diikuti dengan penurunan kandungan kalornya yang terjadi didalam nosel.  Hal ini menyebabkan naiknya kecepatan uap yang keluar dari nosel (energi kinetik). Kemudian energi kecepatan semburan uap yang keluar dari nosel yang diarahkan kepada sudu gerak (sudu-sudu cakram yang berputar) memberikan gaya impuls pada-pada sudu gerak sehingga menyebabkan sudu-sudu gerak berputar (melakukan kerja mekanis).
Atau bisa dafahami secara sederhana pronsip kerja dari turbin impuls yaitu turbin yang proses ekspansi lengkap uapnya hanya terjadi pada kanal diam (nosel) saja, dan energi kecepatan diubah menjadi kerja mekanis pada sudu-sudu turbin. Kecepatan uap yang keluar dari turbin jenis ini bisa mencapai 1200/detik. Turbin jenis ini pertama kali dibuat oleh de Laval, yang mana turbin ini mampu beroperasi pada putaran 30.000rpm.
Pada aplikasinya turbin impuls ini dilengkapi dengan roda gigi reduksi untuk memindahkan momen putar ke mekanisme yang akan digerakkan seperti generator listrik.
Turbin reaksi yaitu turbin yang ekspansi uapnya tidak hanya terjadi pada laluan-laluan sudu pengarah (nosel) yang tetap saja tetapi juga terjadi pada laluan sudu gerak (sudu-sudu cakram yang berputar), sehingga terjadi penurunan keseluruhan kandungan kalor pada semua tingkat sehingga terdistribusi secara seragam. Turbin yang jenis ini umumnyan digunakan untuk kepentingan industri. Kecepatan uap yang mengalir pada turbin (yang biasanyan nekatingkat)  lebih rendah yaitu sekitar 100 – 200 m/detik.
Pada dasarnya prinsip kerja turbin uap sama dengan mesin uap tipe bolak balik. Bedanya mesin uap tipe bolak balik menggunakan piston, sedangkan turbin uap menggunakan turbin. Pada mesin uap tipe bolak balik, kalor diubah terlebih dahulu menjadi energi kinetik translasi piston. Setelah itu energi kinetik translasi piston diubah menjadi energi kinetik rotasi roda pemutar.  Nah, pada turbin uap, kalor langsung diubah menjadi energi kinetik rotasi turbin.
Turbin bisa berputar akibat adanya perbedaan tekanan. Suhu uap sebelah atas bilah jauh lebih besar daripada suhu uap sebelah bawah bilah (bilah tuh lempeng tipis yang ada di tengah turbin). Ingat ya, suhu berbading lurus dengan tekanan. Karena suhu uap pada sebelah atas bilah lebih besar dari suhu uap pada sebelah bawah bilah maka tekanan uap pada sebelah atas bilah lebih besar daripada tekanan uap pada sebelah bawah bilah. Adanya perbedaan tekanan menyebabkan si uap mendorong bilah ke bawah sehingga turbin berputar. Arah putaran turbin tampak seperti gambar di bawah:


Perlu diketahui bahwa prinsip kerja mesin uap didasarkan pada diagram perpindahan energi yang telah dijelaskan di atas. Dalam hal ini, energi mekanik bisa dihasilkan apabila kita membiarkan kalor mengalir dari benda atau tempat bersuhu tinggi menuju benda atau tempat bersuhu rendah. Dengan demikian, perbedaan suhu sangat diperlukan pada mesin uap. Btw, apabila dirimu perhatikan cara kerja mesin uap tipe bolak balik, tampak bahwa piston tetap bisa bergerak ke kanan dan ke kiri walaupun tidak ada perbedaan suhu (tidak ada kondensor dan pompa). Piston bisa bergerak ke kanan akibat adanya pemuaian uap bersuhu tinggi atau uap bertekanan tinggi. Dalam hal ini, sebagian kalor pada uap berubah menjadi energi kinetik translasi piston. Energi kinetik translasi piston kemudian berubah menjadi energi kinetik rotasi roda pemutar. Setelah melakukan setengah putaran, roda akan menekan piston kembali ke kiri. Ketika roda menekan piston kembali ke kiri, energi kinetik rotasi roda berubah lagi menjadi energi kinetik translasi piston. Ketika piston bergerak ke kiri, piston mendorong uap yang ada dalam silinder. Pada saat yang sama, katup pembuangan terbuka. Dengan demikian, uap yang didorong piston tadi akan mendorong temannya ada di sebelah bawah katup pembuangan. Nah, apabila suhu uap yang berada di sebelah bawah katup pembuangan = suhu uap yang didorong piston, maka semua energi kinetik translasi piston akan berubah lagi menjadi energi dalam uap. Energi dalam berbanding lurus dengan suhu. Kalau energi dalam uap bertambah maka suhu uap meningkat. Suhu berbanding lurus dengan tekanan. Kalau suhu uap meningkat maka tekanan uap juga meningkat. Dengan demikian, tekanan uap yang dibuang melalui katup pembuangan = tekanan uap yang masuk melalui katup masukan. Piston akan tetap bergerak ke kanan dan ke kiri seterusnya tetapi tidak akan ada energi kinetik total yang bisa dimanfaatkan (tidak ada kerja total yang dihasilkan). Jadi energi kinetik yang diterima oleh piston selama proses pemuaian (piston bergerak ke kanan) akan dikembalikan lagi kepada uap selama proses penekanan (piston bergerak ke kiri). Pahami perlahan-lahan ya…  Dari penjelasan panjang lebar dan bertele-tele sebelumnya, kita bisa menyimpulkan bahwa perbedaan suhu dalam mesin uap tetap diperlukan. Perbedaan suhu dalam mesin uap bisa diperoleh dengan memanfaatkan kondensor. Ketika suhu dan tekanan uap yang berada di sebelah bawah katup pembuangan jauh lebih kecil dari pada suhu dan tekanan uap yang berada di dalam silinder, maka ketika si piston bergerak kembali ke kiri, besarnya tekanan (P = F/A) yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya tekanan yang diberikan uap kepada piston ketika si piston bergerak ke kanan. Dengan kata lain, besarnya usaha alias kerja yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya kerja yang dilakukan uap terhadap piston (W = Fs). Jadi hanya sebagian kecil energi kinetik piston yang dikembalikan lagi pada uap. Dengan demikian akan ada energi kinetik total atau kerja total yang dihasilkan. Energi kinetik total ini yang dipakai untuk menggerakan sesuatu (membangkitkan listrik dkk…) Pembangkitan energi listrik akan dibahas secara mendalam pada pokok bahasan listrik dan magnet.


 Dunia industri sekarang ini membutuhkan suatu instalasi pembangkit daya yang berfungsi sebagai sumber tenaga (menggerakkan generator) dan sebagai penunjang proses produksi yang lain (menggerakkan pompa, kompressor, baling-baling dll). Instalasi pembangkit daya terdiri dari ketel uap dan turbin uap, turbin uap adalah mesin konversi energi yang dapat mengubah energi potensial uap menjadi energi mekanik yang selanjutnya dapat memutar poros turbin. Energi merupakan kemampuan suatu zat untuk melakukan kerja. Dan Penggunaan uap sebagai fluida kerja didasarkan atas existensinya sebagai sumber tenaga yang besar dan belum dapat digeser oleh sumber energi yang lain. Turbin uap menggunakan fluida kerja berupa uap yang diproduksi oleh ketel uap. Pada Tugas Akhir ini dianalisa Turbin Uap Curtis Multistage dengan daya 4500 kW yang digunakan Pabrik Gula Gempolkrep sebagai penggerak generator. Turbin Uap Curtis merupakan Turbin Impuls dengan kecepatan bertingkat, dimana jumlah tingkatnya adalah 4 tingkat. Dengan menggunakan analisa thermodinamika, didapat bahwa kecepatan uap yang melalui nosel mengalami kenaikan sebesar 334,5 m/s, sedangkan pada sudu gerak kecepatannya mengalami penurunan sebesar 323,63 m/s. Gaya yang bekerja pada sudu mengalami kenaikan pada tiap tingkatnya, pada tingkat pertama 439,29 kg dan tingkat keempat 453,47 kg. Kerugian energi kinetik pada sudu gerak sebesar 20,787 kkal/kg dengan prosentase 14,39 %, kerugian energi pada nosel, yaitu sebesar 14,181 kkal/kg dengan prosentase sebesar 9,81 %. Total kerugian energi sebesar 44,453 kkal/kg, sehingga energi yang dapat dimanfaatkan sebesar 100,047 kkal/kg dari energi yang masuk turbin sebesar 144,5 kkal/kg. Total efisiensi pada turbin sebesar 69,24 %. Dalam usaha meningkatkan daya, efisiensi dan umur pemakaian turbin uap Curtis dapat dilakukan bila kita mengerti dan memiliki pengetahuan yang mendalam tentang turbin uap curtis, serta perhatian mengenai berbagai hal yang berhubungan dengan sistem pembangkit uap. Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan elemen lain, dihubungkan dengan mekanisme yang digerakkan.
Tergantung dari jenis mekanisme yang digerakkan turbin uap dapat digunakan pada berbagai bidang industri, seperti untuk pembangkit listrik.

Turbin uap merupakan salah satu jenis mesin yang menggunakan metode external combustion engine (mesin pembakaran luar). Pemanasan fluida kerja (uap) dilakukan di luar sistem. Prinsip kerja dari suatu instalasi turbin uap secara umum adalah dimulai dari pemanasan air pada ketel uap. Uap air hasil pemanasan yang bertemperatur dan bertekanan tinggi selanjutnya digunakan untuk menggerakkan poros turbin. Uap yang keluar dari turbin selanjutnya dapat dipanaskan kembali atau langsung disalurkan ke kondensor untuk didinginkan. Pada kondensor uap berubah kembali menjadi air dengan tekanan dan temperatur yang telah menurun. Selanjutnya air tersebut dialirkan kembali ke ketal uap dengan bantuan pompa. Dari penjelasan diatas dapat disimpulkan bahwa turbin uap adalah mesin pembangkit yang bekerja dengan sistem siklus tertutup.

















Komponen Utama Turbin Uap
Secara umum komponen-komponen utama dari sebuah turbin uap adalah :
  • Nosel, sebagai media ekspansi uap yang merubah energi potensial menjadi energi kinetik.
  • Sudu, alat yang menerima gaya dari energi kinetik uap melalui nosel.
  • Cakram, tempat sudu-sudu dipasang secara radial pada poros.
  • Poros, sebagai komponen utama tempat dipasangnya cakram-cakram sepanjang sumbu.
  • Bantalan, bagian yang berfungsi uuntuk menyokong kedua ujung poros dan banyak menerima beban.
  • Kopling, sebagai penghubung antara mekanisme turbin uap dengan mekanisme yang digerakkan.

Klasifikasi Turbin Uap
Turbin uap dapat diklasifikasikan sebagai berikut :
a.      Menurut arah aliran uap
Turbin aksial Fluida kerja mengalir dalam arah yang sejajar terhadap sumbu turbin Turbin radial Fluida kerja mengalir dalam arah yang tegak lurus terhadap sumbu turbin.
b.      Menurut prinsip aksi uap
Turbin impuls Energi potensial uap diubah menjadi energi kinetik di dalam nosel. Turbin reaksiEkspansi uap terjadi pada sudu pengarah dan sudu gerak.
c.       Menurut kondisi uap pada sisi masuk turbin.
Turbin tekanan rendah Memakai uap pada tekanan 1,2 – 2 ata. Turbin tekanan menengah
Memakai uap pada tekanan sampai 40 ata. Turbin tekanan tinggi Memakai uap pada tekanan sampai 170 ata atau lebih. Turbin tekanan super tinggi Memakai uap pada tekanan sampai 235 ata atau lebih.       




d. Menurut pemakaiannya di bidang industry
- Turbin stasioner dengan putaran yang konstan yang dipakai terutama untuk generator.
- Turbin stasioner dengan putaran yang bervariasi dipakai untuk mengerakkan blower turbo, pompa, dan lain-lain.
- Turbin tidak stasioner dengan putaran yang bervariasi, biasa digunakan pada kapal dan lokomotif uap.


Read More..